TCNSVD: A Temporal and Community-Aware Recommender Approach
نویسندگان
چکیده
Recommender systems support users in nding relevant items in overloaded information spaces. Researchers and practitioners have proposed many dierent collaborative ltering algorithms for different information scenarios, domains and contexts. One of the laer, are time-aware recommender methods that consider temporal dynamics in the users’ interests in certain items, topics, etc. While there is extensive research on time-aware recommender systems, surprisingly, researchers have paid lile aention to model temporal community structure dynamics (community dri). In consequence, recommender systems seldom exploit explicit and implicit community structures that are present in online systems, where one can see what others have been watching, sharing and or tagging. In this paper, we propose a recommender method that not only considers temporal interest dynamics in online communities, but also exploits the social structure by the means of community detection algorithms. We conducted oine experiments on the Netix dataset and the latest MovieLens dataset with tag information. Our method outperformed the current state-of-the-art in rating and item-ranking prediction. is work contributes to the connection of two separate recommender research directions, in which exploits community structure and temporal eects together in recommender systems.
منابع مشابه
Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملEvolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System
The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017